Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme.
نویسندگان
چکیده
The homodimeric flavoenzyme glutathione reductase (GR) maintains high intracellular concentrations of the antioxidant glutathione (GSSG + NADPH + H(+) <--> 2 GSH + NADP(+)). Due to its central function in cellular redox metabolism, inhibition of GR from the malarial parasite Plasmodium falciparum represents an important approach to antimalarial drug development; therefore, the catalytic mechanism of GR from P. falciparum has been analyzed and compared with the human host enzyme. The reductive half-reaction is similar to the analogous reaction with GR from other species. The oxidative half-reaction is biphasic, reflecting formation and breakdown of a mixed disulfide between the interchange thiol and GSH. The equilibrium between the E(ox)-EH(2) and GSSG-GSH couples has been modeled showing that the Michaelis complex, mixed disulfide-GSH, is the predominant enzyme form as the oxidative half-reaction progresses; rate constants used in modeling allow calculation of an K(eq) from the Haldane relationship, 0.075, very similar to the K(eq) of the same reaction for the yeast enzyme (0.085) (Arscott, L. D., Veine, D. M., and Williams, C. H., Jr. (2000) Biochemistry 39, 4711-4721). Enzyme-monitored turnover indicates that E(FADH(-))(S-S). NADP(+) and E(FAD)(SH)(2).NADPH are dominant enzyme species in turnover. Since the individual forms of the enzyme differ in their susceptibility to inhibitors, the prevailing states of GR in the cell are of practical relevance.
منابع مشابه
X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum.
GSTs catalyze the conjugation of glutathione with a wide variety of hydrophobic compounds, generally resulting in nontoxic products that can be readily eliminated. In contrast to many other organisms, the malarial parasite Plasmodium falciparum possesses only one GST isoenzyme (PfGST). This GST is highly abundant in the parasite, its activity was found to be increased in chloroquine-resistant c...
متن کاملMalarial parasite hexokinase and hexokinase-dependent glutathione reduction in the Plasmodium falciparum-infected human erythrocyte.
The metabolism of glucose in Plasmodium falciparum-infected human erythrocytes is increased 50- to 100-fold. This is accomplished in part by parasite-directed synthesis of a protozoan hexokinase with unique kinetic, electrophoretic, and heat stability properties. The total hexokinase activity is increased approximately 25-fold over that of control uninfected erythrocytes of the same age from th...
متن کاملThe malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification.
Coevolution of the malarial parasite and its human host has resulted in a complex network of interactions contributing to the homeodynamics of the host-parasite unit. As a rapidly growing and multiplying organism, Plasmodium falciparum depends on an adequate antioxidant defense system that is efficient despite the absence of genuine catalase and glutathione peroxidase. Using different experimen...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملClinical Pharmacology of the Antimalarial Artemisinin-Based Combination and other Artemisinins in Children
In 2010, there were estimated 219 million cases of malaria resulting in 666,000 deaths and two-thirds were children. Children are more vulnerable than adults to malaria parasites. In sub-Saharan African countries, maternal malaria is associated with up to 200,000 estimated infant deaths yearly. Malaria is caused by five Plasmodium parasites namely: Plasmodium falciparum, Plasmodium vivax, Plasm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 48 شماره
صفحات -
تاریخ انتشار 2000